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Chapter 1
Series

Some Results on Sequences:

(1) lim
n→∞

xn = 0 (x < 1)

(2) lim
n→∞

nxn = 0 (x < 1)

(3) lim
n→∞

xn =∞ (x > 1)

(4) lim
n→∞

xn

n!
= 0

(5) lim
n→∞

log n

n
= 0

(6) lim
n→∞

(
1 +

1

n

)n
= e

(7) lim
n→∞

(n)1/n = 1

(8) lim
n→∞

(n!)1/n =∞

(9) lim
n→∞

[(n!)

n

]1/n
=

1

e

(10) lim
n→∞

(n)n =∞

(11) lim
n→∞

1

nn
= 0

(12) lim
x→0

(ax − 1

x

)
= ln a

(13) lim
x→0

sinx

x
= 1

(14) lim
x→0

tanx

x
= 1

(15) lim
x→0

sin−1 x

x
= 1

(16) lim
x→0

tan−1 x

x
= 1

A series is sum of sequence. Let a1, a2, a3, . . . , an, . . . be a sequence. Then

a1 + a2 + a3 + . . .+ an + . . . =
∞∑
n=1

an

is called the series corresponding to the sequence {an}. For example, if 1, 1
2
, 1
3
, . . . is a sequence,

then the corresponding series is 1 + 1
2

+ 1
3

+ . . . =
∞∑
n=1

1
n
.

Sequence of Partial Sum

Let
∞∑
n=1

an = a1 + a2 + a3 + . . .+ an + . . . be a series. Consider

s1 = a1

s2 = a1 + a2

s3 = a1 + a2 + a3

. . . . . .

sn = a1 + a2 + a3 + . . .+ an.
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Chapter 1. Series Series

Then s1, s2, s3 . . . , sn, . . . is a sequence of real numbers. Note that for each n ∈ N, sn is the

sum of first n terms of the series
∞∑
n=1

an. Therefore {sn} is called the sequence of partial

sums of the series
∞∑
n=1

an.

Now, when we write
∑
an it means n is running from n = 1 to ∞ if that is not specified

separately.

Nature of the Series

Consider a series
∞∑
n=1

an and {sn} the corresponding sequence of partial sums. Then

following three cases arise:

• If sn tends to a finite number as n→∞, then series
∑
an is said to be convergent.

• If sn tends to infinity as n→∞, then series
∑
an is said to be divergent.

• If sn does not tend to a unique limit finite or infinite, then series
∑
an is said to be

oscillatory.

Properties of Infinite Series

• If we add or remove finitely many terms in a series, then a convergent series remains

convergent and a divergent series remains divergent.

• If we multiply each term of the series by a non-zero constant, then a convergent

series remains convergent and a divergent series remains divergent.

• If
∑
an and

∑
bn are convergent, then

∑
an±

∑
bn =

∑
(an±bn) is also convergent.

0.1. Definition (Geometric Series).

A series of the form
∞∑
n=1

arn−1 = a+ ar + ar2 + ar3 + . . .+ arn−1 + . . . (a, r ∈ R \ {0})

is called the geometric series. The series is

(1) convergent if |r| < 1; (2) divergent if r ≥ 1; (3) oscillatory if r ≤ −1.

0.2. Example. Examine the convergence of the series:

(1)
1

2
+

1

32
+

1

22
+

1

34
+ . . . (2) 2 + 22 + 23 + 24 + . . .

Solution:(1)

1

2
+

1

32
+

1

22
+

1

34
+ . . . =

(1

2
+

1

22
+

1

23
+ . . .

)
+
( 1

32
+

1

34
+

1

36
. . .
)

=
∑

an +
∑

bn (say)
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Series Chapter 1. Series

Now,
∑
an is a G.P. with common ratio r = 1

2
< 1, therefore

∑
an is convergent;

similarly
∑
bn is a G.P. with common ratio r = 1

32
< 1, therefore

∑
bn is convergent. Thus,

the given series
∑

(an + bn) is also convergent.

(2) 2 + 22 + 23 + 24 + . . . =
∑
an (say). Which is a G.P. with common ratio r = 2 > 1, Thus,

the series is divergent.

0.3. Example. Test the convergence or divergence of the following series:

(1)
∞∑
n=0

2n − 1

3n
(2)

∞∑
n=1

4n + 5n

6n

Solution:(1)
∞∑
n=0

2n − 1

3n
=
∞∑
n=0

2n

3n
− 1

3n
=
∞∑
n=0

(2

3

)n
−
∞∑
n=0

(1

3

)n
=
∑

an −
∑

bn (say).

Now,
∑
an is a G.P. with common ratio r = 2

3
< 1, therefore

∑
an is convergent; similarly,∑

bn is a G.P. with common ratio r = 1
3
< 1, therefore

∑
bn is also convergent. Thus, the

given series
∑

(an − bn) is also convergent.

(2)
∞∑
n=1

4n + 5n

6n
=
∞∑
n=1

4n

6n
+

5n

6n
=
∞∑
n=1

(2

3

)n
+
∞∑
n=1

(5

6

)n
=
∑

an +
∑

bn (say).

Now,
∑
an is a G.P. with common ratio r = 2

3
< 1, therefore

∑
an is convergent;

similarly,
∑
bn is a G.P. with common ratio r = 5

6
< 1, therefore

∑
bn is also convergent.

Thus, the given series
∑

(an + bn) is also convergent.

0.4. Definition (Positive Term Series).

If all the terms after some finitely many terms of an infinite series are positive then such

a series is called positive term series.

e.g. −7 + 8− 3− 5 + 9− 32 + 2 + 3 + 5 + 34 + . . .︸ ︷︷ ︸
positive terms

is a positive term series.

0.5. Theorem. If
∑
an is convergent, then lim

n→∞
an = 0.

To find the nature of the series we have to find the sequence of partial sums {sn} of the

series, but it is not possible to find {sn} for every series, and sometime it is difficult also. In

this case the contrapositive statement of the above theorem, known as Cauchy’s fundamental

test for divergence, may be helpful to check for divergence of the series.

0.6. Theorem (Cauchy’s Fundamental Test for Divergence).

If lim
n→∞

an 6= 0, then
∑

an is divergent.
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Chapter 1. Series Series

0.7. Example. Discuss the convergence of the series:√
1

4
+

√
2

6
+

√
3

8
+ . . .+

√
n

2n+ 2
+ . . .

Solution:
√

1
4

+
√

2
6

+
√

3
8

+ . . .+
√

n
2n+2

+ . . . =
∑
an (say). Then,

lim
n→∞

an = lim
n→∞

√
n

2n+ 2
= lim

n→∞

√
1

2 + 2
n

=
1√
2
6= 0.

Therefore,
∑
an is not convergent.

p-Series

0.8. Theorem. The series
∑ 1

np
=

1

1p
+

1

2p
+

1

3p
+ . . . is

(1) convergent if p > 1; (2) divergent if p ≤ 1.

0.9. Example. Examine the convergence of the series:

(1) 1 + 1
42/3

+ 1
92/3

+ 1
162/3

+ 1
252/3

+ . . .

(2) 1 + 1
2

+ 1
3

+ 1
4

+ 1
5

+ . . .

(3) 1 + 1√
2

+ 1√
3

+ 1√
4

+ . . .

Solution: (1)

1 +
1

42/3
+

1

92/3
+

1

162/3
+

1

252/3
+ . . . = 1 +

1

24/3
+

1

34/3
+

1

44/3
+

1

54/3
+ . . .

=
∑ 1

n4/3
=≈ 1

np
;

here p = 4
3
> 1. By p-series test, the given series is convergent.

(2)

1 +
1

2
+

1

3
+

1

4
+

1

5
+ . . . =

∑ 1

n
≈
∑ 1

np
;

here p = 1 ≤ 1. By p-series test, the given series is divergent.

(3)

1 +
1√
2

+
1√
3

+
1√
4

+ . . . =
∑ 1√

n
≈
∑ 1

np
;

here p = 1
2
≤ 1. By p-series test, the given series is divergent.

Comparison Test

0.10. Theorem. Let
∑
an and

∑
bn be two positive term series such that

lim
n→∞

an
bn

= L;

then

(1) if L is non-zero and finite, then
∑
an and

∑
bn converge or diverge together;

(2) if L = 0, then
∑
an is convergent if

∑
bn is convergent;

(3) if L =∞, then
∑
an is divergent if

∑
bn is divergent.
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Series Chapter 1. Series

0.11. Example. Examine the convergence of the series:

(1)
∞∑
n=1

√
n2 − 1

n4 + 1

(2)
∞∑
n=1

√
n2 + 1− n

(3) 1 + 1
22

+ 22

33
+ 33

44
+ . . .

(4)
∞∑
n=1

sin 1
n

(5)
∞∑
n=1

sin 1
n2

(6)
∞∑
n=1

1

n1+ 1
n

Solution:(1)
∞∑
n=1

√
n2 − 1

n4 + 1
=
∑
an. Here an =

√
n2 − 1

n4 + 1

an =

√
n2 − 1

n4 + 1
=
n
√

1− 1
n2

n4(1 + 1
n4 )

=

√
1− 1

n2

n3(1 + 1
n4 )

Take bn = 1
n3 .

lim
n→∞

an
bn

= lim
n→∞

√
1− 1

n2

1 + 1
n4

=
1

1
= 1 6= 0 and finite.

Therefore by comparison test
∑
an and

∑
bn converge or diverge together. But

∑
bn =∑

1
n3 =

∑
1
np with p = 3, so

∑
bn is convergent. Hence

∑
an is convergent.

(2)
∞∑
n=1

√
n2 + 1− n =

∑
an. Here an =

√
n2 + 1− n

an =
√
n2 + 1− n =

√
n2 + 1− n×

√
n2 + 1 + n√
n2 + 1 + n

=
n2 + 1− n2

√
n2 + 1 + n

=
1√

n2 + 1 + n
=

1

n(
√

1 + 1
n2 + 1)

;

Take bn = 1
n
.

lim
n→∞

an
bn

= lim
n→∞

1√
1 + 1

n2 + 1
=

1

2
6= 0 and finite.

Therefore by comparison test
∑
an and

∑
bn converge or diverge together. But

∑
bn =

∑
1
n

=∑
1
np with p = 1, so

∑
bn is divergent. Hence

∑
an is divergent.

(3) 1 + 1
22

+ 22

33
+ 33

44
+ . . . =

∑
an. Take an = nn

(n+1)n+1 (We omit the first term because

nature of the series is not affected by omitting finitely many terms.) We have

an =
nn

(n+ 1)n+1
=

nn

nn+1(1 + 1
n
)n+1

=
1

n(1 + 1
n
)n+1

;

Take bn = 1
n
.

lim
n→∞

an
bn

= lim
n→∞

1

(1 + 1
n
)n+1

= lim
n→∞

1

(1 + 1
n
)n

1

(1 + 1
n
)

=
1

e

1

1
=

1

e
6= 0 and finite.
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Chapter 1. Series Series

Therefore by comparison test
∑
an and

∑
bn converge or diverge together. But

∑
bn =

∑
1
n

=∑
1
np with p = 1, so

∑
bn is divergent. Hence

∑
an is divergent.

(4)
∞∑
n=1

sin 1
n

=
∑
an. Here an = sin 1

n
. Take bn = 1

n
.

lim
n→∞

an
bn

= lim
n→∞

sin 1
n

1
n

= lim
1
n
→0

sin 1
n

1
n

= 1 6= 0 and finite.

Therefore by comparison test
∑
an and

∑
bn converge or diverge together. But

∑
bn =

∑
1
n

=∑
1
np with p = 1, so

∑
bn is divergent. Hence

∑
an is divergent.

(5) Try your self (Hint: Compare with bn = 1
n2 ; convergent)

(6)
∞∑
n=1

1

n1+ 1
n

=
∑
an. Here an = 1

n1+ 1
n

an =
1

n1+ 1
n

=
1

n · n 1
n

Take bn = 1
n
.

lim
n→∞

an
bn

= lim
n→∞

1

n
1
n

=
1

1
= 1 6= 0 and finite.

Therefore by comparison test
∑
an and

∑
bn converge or diverge together. But

∑
bn =

∑
1
n

=∑
1
np with p = 1, so

∑
bn is divergent. Hence

∑
an is divergent.

0.12. Example. Discuss the convergence of the following series:

(1)
∞∑
n=1

1

1 + 22 + 32 + . . .+ n2

(2)
∞∑
n=1

tan−1
( 1

n2 + n+ 1

) (3)
∞∑
n=1

2n2 + 3n

5 + n5

(4)
∞∑
n=1

np√
n+ 1 +

√
n

Solution: (1)
∞∑
n=1

1

1 + 22 + 32 + . . .+ n2
=
∑
an. Here,

an =
1

1 + 22 + 32 + . . .+ n2
=

1
n(n+1)(2n+1)

6

=
6

n(n+ 1)(2n+ 1)
=

6

n3(1 + 1
n
)(2 + 1

n
)
.

Take bn = 1
n3 .

lim
n→∞

an
bn

= lim
n→∞

6

(1 + 1
n
)(2 + 1

n
)

=
6

3
= 2 6= 0 and finite.

Therefore, by comparison test
∑
an and

∑
bn converge or diverge together. But

∑
bn =∑

1
n3 =

∑
1
np with p = 3, so

∑
bn is convergent. Hence

∑
an is convergent.

Government Science College, Gandhinagar,

7

Dr. Bhavin Patel



Series Chapter 1. Series

(2)
∞∑
n=1

tan−1
( 1

n2 + n+ 1

)
=
∑
an. Here, an = tan−1

( 1

n2 + n+ 1

)
. Take bn =

1

n2 + n+ 1
.

lim
n→∞

an
bn

= lim
n→∞

tan−1
(

1
n2+n+1

)
(

1
n2+n+1

) = lim
(n2+n+1)→∞

tan−1
(

1
n2+n+1

)
(

1
n2+n+1

)
= lim

1
n2+n+1

→0

tan−1
(

1
n2+n+1

)
(

1
n2+n+1

) = 1 6= 0 and finite.

Therefore, by comparison test
∑
an and

∑
bn converge or diverge together. Now we cheek

wether
∑
bn is convergent or divergent.∑

bn =
∑ 1

n2 + n+ 1
=
∑ 1

n2(1 + 1
n

+ 1
n2 )

.

Take cn = 1
n2 , then

lim
n→∞

bn
cn

= lim
n→∞

1

1 + 1
n

+ 1
n2

= 1 6= 0 and finite.

Therefore, by comparison test
∑
an and

∑
bn converge or diverge together. But

∑
cn =∑

1
n2 =

∑
1
np with p = 2, so

∑
cn is convergent. Hence

∑
bn is convergent, and therefore∑

an is also convergent.

(3)
∞∑
n=1

2n2 + 3n

5 + n5
=
∑
an. Here,

an =
2n2 + 3n

5 + n5
=

n2(2 + 3
n
)

n5(1 + 5
n5 )

=
2 + 3

n

n3(1 + 5
n5 )

.

Take bn = 1
n3 , then

lim
n→∞

an
bn

= lim
n→∞

2 + 3
n

1 + 5
n5

= 2 6= 0 and finite.

Therefore, by comparison test
∑
an and

∑
bn converge or diverge together. But

∑
bn =∑

1
n3 =

∑
1
np with p = 3, so

∑
bn is convergent. Hence,

∑
an is convergent.

(4)
∞∑
n=1

np√
n+ 1 +

√
n

=
∑
an. Here,

an =
np√

n+ 1 +
√
n

=
np

√
n
(√

1 + 1
n

+ 1
) =

1

n
1
2
−p
(√

1 + 1
n

+ 1
) .

Take bn =
1

n
1
2
−p

, then

lim
n→∞

an
bn

= lim
n→∞

1√
1 + 1

n
+ 1

= 2 6= 0 and finite.
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Therefore, by comparison test
∑
an and

∑
bn converge or diverge together. But

∑
bn =∑ 1

n
1
2
−p

=
∑

1
nq with q = 1

2
− p. Now

∑
bn is convergent if 1

2
− p = q > 1,i.e, p < 1

2
. Hence,∑

an is convergent for p < 1
2

and divergent if p ≥ 1
2
.

0.13. Example. For which values of p does the series
∞∑
n=1

n+ 1

np
is convergent.

∞∑
n=1

n+ 1

np
=
∑
an. Here,

an =
n+ 1

np
=
n
(

1 + 1
n

)
np

=
1 + 1

n

np−1
.

Take bn =
1

np−1
, then

lim
n→∞

an
bn

= lim
n→∞

1 +
1

n
= 1 6= 0 and finite.

Therefore, by comparison test
∑
an and

∑
bn converge or diverge together. But

∑
bn =∑ 1

np−1
=
∑

1
nq with q = p − 1. Now

∑
bn is convergent if p − 1 = q > 1, i.e, p > 2. Hence,∑

an is convergent for p > 2 and divergent if p ≤ 2.

D’Alembert’s Ratio Test

0.14. Theorem. If
∑
an is a positive term series such that

lim
n→∞

an
an+1

= L;

then

(1)
∑
an is convergent if L > 1 ;

(2)
∑
an is divergent if L < 1 ;

(3) Test fails if L = 1.

0.15. Example. Examine the convergence of the series:

(1)
∞∑
n=1

n!

nn

(2)
∞∑
n=1

xn

3n · n2
, x > 0

(3)
∞∑
n=1

n2n(n+ 1)!

3nn!

(4)
∞∑
n=1

n

e−n

(5)
1

2!
+

2

3!
+

3

4!
+ . . .

(6)
∞∑
n=1

n3 + 2

2n + 2

Solution: (1)
∞∑
n=1

n!

nn
, here an =

n!

nn
. Thus,

lim
n→∞

an
an+1

= lim
n→∞

n!

nn
· (n+ 1)n+1

(n+ 1)!
= lim

n→∞

n!

nn
·
nn+1

(
1 + 1

n+1

)n+1

(n+ 1) · n!
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Series Chapter 1. Series

= lim
n→∞

n

n+ 1
·
(

1 +
1

n+ 1

)n+1

= lim
n→∞

1

1 + 1
n

·
(

1 +
1

n+ 1

)n+1

= 1 · e = e > 1.

Therefore, by D’Alembert’s ratio test,
∑
an is convergent.

(2)
∞∑
n=1

xn

3n · n2
, here an =

xn

3n · n2
. Thus,

lim
n→∞

an
an+1

= lim
n→∞

xn

3n · n2
· 3n+1 · (n+ 1)2

xn+1
= lim

n→∞

3 · (n+ 1)2

x · n2
= lim

n→∞

3 · (1 + 1
n
)2

x
=

3

x
.

Therefore, by D’Alembert’s ratio test ,
∑
an:

convergent if 3
x
> 1; divergent if 3

x
< 1 and test fails if 3

x
= 1; i.e. convergent if x < 3;

divergent if x > 3 and test fails if x = 3.

For x = 3,
∞∑
n=1

xn

3n · n2
=
∞∑
n=1

3n

3n · n2
=
∞∑
n=1

1

n2
; which is convergent by p- series test. Thus, given

series is convergent if x ≤ 3 and divergent if x > 3.

(3)
∞∑
n=1

n2n(n+ 1)!

3nn!
, here an =

n2n(n+ 1)!

3nn!
. Thus,

lim
n→∞

an
an+1

= lim
n→∞

n · 2n · (n+ 1)!

3n · n!
· 3n+1 · (n+ 1)!

(n+ 1) · 2n+1 · (n+ 2)!
= lim

n→∞

3 · n
2 · (n+ 2)

= lim
n→∞

3

2
· 1

1 + 2
n

=
3

2
> 1.

Therefore, by D’Alembert’s ratio test,
∑
an is convergent.

(4)
∞∑
n=1

n

e−n
, here an =

n

e−n
. Thus,

lim
n→∞

an
an+1

= lim
n→∞

n

e−n
· e
−(n+1)

n+ 1
= lim

n→∞

1

e
· 1

1 + 1
n

=
1

e
< 1.

Therefore, by D’Alembert’s ratio test,
∑
an is divergent.

(5) Here, an =
n

(n+ 1)!
. Thus,

lim
n→∞

an
an+1

= lim
n→∞

n

(n+ 1)!
· (n+ 2)!

n+ 1
= lim

n→∞

n(n+ 2)

(n+ 1)
= lim

n→∞
n
(

1 +
1

n+ 1

)
=∞ > 1.

Therefore, by D’Alembert’s ratio test,
∑
an is convergent.

(6) Here, an =
n3 + 2

2n + 2
. Thus,

lim
n→∞

an
an+1

= lim
n→∞

n3 + 2

2n + 2
· 2n+1 + 2

(n+ 1)3 + 2
= lim

n→∞

n3
(

1 + 2
n3

)
2n
(

1 + 2
2n

) · 2n+1
(

1 + 2
2n+1

)
n3
[(

1 + 1
n

)3
+ 2

n3

]
= lim

n→∞

1 + 0

1 + 0
· 2(1 + 0)

(1 + 0)3 + 0
= 2 > 1.
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Therefore, by D’Alembert’s ratio test,
∑
an is convergent.

Cauchy’s nth Root Test

0.16. Theorem. If
∑
an is a positive term series such that

lim
n→∞

(an)1/n = L;

then

(1)
∑
an is convergent if L < 1 ;

(2)
∑
an is divergent if L > 1 ;

(3) Test fails if L = 1.

0.17. Example. Examine the convergence of the following series:

(1)
∞∑
n=1

(n− log n)n

2n · nn
(2) 1

2
+ 2

3
x+ (3

4
)2x2 + (4

5
)3x3 + . . . , x ≥ 0.

Solution: (1)
∞∑
n=1

(n− log n)n

2n · nn
, here an =

(n− log n)n

2n · nn
. Thus,

lim
n→∞

(an)
1
n = lim

n→∞

((n− log n)n

2n · nn
) 1

n
= lim

n→∞

1

2

(n− log n

n

)
= lim

n→∞

1

2

(
1− log n

n

)
=

1

2

(
1− lim

n→∞

log n

n

)
=

1

2

(
1− lim

n→∞

1
n

1

) (∞
∞

form; By L’Hopital rule
)

=
1

2
(1− 0) =

1

2
< 1.

Therefore, by Cauchy’s root test the series is convergent.

(2) 1
2

+ 2
3
x+ (3

4
)2x2 + (4

5
)3x3 + . . .. Omit the first term, we have

∑
an =

∞∑
n=1

(
n+1
n+2

)n
xn. Thus,

an =
∞∑
n=1

(
n+1
n+2

)n
xn

lim
n→∞

(an)
1
n = lim

n→∞

((n+ 1

n+ 2

)n
xn
) 1

n
= lim

n→∞

n (1 + 1
n
)

n (1 + 2
n
)
x = x.

Therefore, by Cauchy’s root test the series is convergent if x < 1; divergent if x > 1 and test

fails if x = 1.

For x = 1;
∑
an =

∞∑
n=1

(
n+1
n+2

)n
. Here an =

(
n+1
n+2

)n
. But,

lim
n→∞

an = lim
n→∞

(n+ 1

n+ 2

)n
= lim

n→∞

(
1 + 1

n

)n
(

1 + 2
n

)n =
e

e2
=

1

e
6= 0.

Therefore, the series is not convergent for x = 1. Thus, the series is convergent if x < 1 and

divergent if x ≥ 1.
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Raabe’s Test

0.18. Theorem. If
∑
an is a positive term series such that

lim
n→∞

n
( an
an+1

− 1
)

= L;

then

(1)
∑
an is convergent if L > 1 ;

(2)
∑
an is divergent if L < 1 ;

(3) Test fails if L = 1.

Remark: The Raabe’s test is used when D’Alembert’s ratio test is failed and the ratio an
an+1

does not contains the number e.

0.19. Example. Examine the convergence of the series:

1 +
3

7
+

3 · 6
7 · 10

+
3 · 6 · 9

7 · 10 · 13
+ . . .

Solution: Omitting the first term, we have

3

7
+

3 · 6
7 · 10

+
3 · 6 · 9

7 · 10 · 13
+ . . . =

∞∑
n=1

3 · 6 . . . (3n)

7 · 10 . . . (3n+ 4)
=
∞∑
n=1

an

Here,

an =
3 · 6 . . . (3n)

7 · 10 . . . (3n+ 4)
.

Therefore,

an+1 =
3 · 6 . . . (3(n+ 1))

7 · 10 . . . (3(n+ 1) + 4)
=

3 · 6 . . . (3n) · (3n+ 3)

7 · 10 . . . (3n+ 4) · (3n+ 7)
.

Now

an
an+1

=
3 · 6 . . . (3n)

7 · 10 . . . (3n+ 4)

7 · 10 . . . (3n+ 4) · (3n+ 7)

3 · 6 . . . (3n) · (3n+ 3)
=

3n+ 7

3n+ 3
;

lim
n→∞

an
an+1

= lim
n→∞

3n+ 7

3n+ 3
= lim

n→∞

1 + 7
3n

1 + 3
3n

= 1.

D’Alembert’s ratio test is failed. Now we will apply Raabe’s test

n
( an
an+1

− 1
)

= n
(3n+ 7

3n+ 3
− 1
)

= n
( 4

3n+ 3

)
=

4n

3n+ 3
;

lim
n→∞

n
( an
an+1

− 1
)

= lim
n→∞

4n

3n+ 3
= lim

n→∞

4

3 + 3
n

=
4

3
> 1.

By Raabe’s test, the series is convergent.

0.20. Example. Examine the convergence of the series:∑ 1 · 3 · 5 . . . (2n− 1)

2 · 4 · 6 . . . (2n)(2n+ 1)
x2n+1
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Solution: Here,

an =
1 · 3 · 5 . . . (2n− 1)

2 · 4 · 6 . . . (2n)(2n+ 1)
x2n+1.

Therefore,

an+1 =
1 · 3 · 5 . . . (2n− 1)(2n+ 1)

2 · 4 · 6 . . . (2n)(2n+ 2)(2n+ 3)
x2n+3.

Now

an
an+1

=
1 · 3 · 5 . . . (2n− 1) x2n+1

2 · 4 · 6 . . . (2n)(2n+ 1)

2 · 4 · 6 . . . (2n)(2n+ 2)(2n+ 3)

1 · 3 · 5 . . . (2n− 1)(2n+ 1) x2n+3
;

=
(2n+ 2)(2n+ 3)

(2n+ 1)2x2

lim
n→∞

an
an+1

= lim
n→∞

(2 + 2/n)(2 + 3/n)

(2 + 1/n)2x2
=

1

x2
.

By D’Alembert’s ratio test, the series is

(1) convergent if
1

x2
> 1 or x2 < 1

(2) divergent if
1

x2
< 1 or x2 > 1

(3) Test fail if
1

x2
= 1

Now we will apply Raabe’s test for x2 = 1. Then

an
an+1

=
(2n+ 2)(2n+ 3)

(2n+ 1)2

⇒ n
( an
an+1

− 1
)

= n
((2n+ 2)(2n+ 3)

(2n+ 1)2
− 1
)

=
n(6n+ 5)

(2n+ 1)2
=

(6 + 5/n)

(2 + 1/n)2
;

⇒ lim
n→∞

n
( an
an+1

− 1
)

= lim
n→∞

(6 + 5/n)

(2 + 1/n)2
=

3

2
> 1.

By Raabe’s test, the series is convergent if x2 = 1.

Hence the series is convergent if x2 ≤ 1 and divergent if x2 > 1.

0.21. Example (H.W.). Eximine the convergence of 1 +
1

2
+

1 · 3
2 · 4

+
1 · 3 · 5
2 · 4 · 6

+ . . .

Answer: Divergent.

0.22. Example (H.W.). Eximine the convergence of
∑ 4 · 7 · 10 . . . (3n+ 1)

1 · 2 · 3 . . . n
xn

Answer: convergent if x < 1/3 and divergent if x ≥ 1/3.
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Logarithmic Test

0.23. Theorem. If
∑
an is a positive term series such that

lim
n→∞

(
n log

an
an+1

)
= L;

then

(1)
∑
an is convergent if L > 1 ;

(2)
∑
an is divergent if L < 1 ;

(3) Test fails if L = 1.

0.24. Example. Examine the convergence of the series:

1

e
+

22

2! · e2
+

33

3! · e3
+

44

4! · e4
+ . . .

Solution: We have,

1

e
+

22

2! · e2
+

33

3! · e3
+

44

4! · e4
+ . . . =

∞∑
n=1

nn

n! · en
=
∞∑
n=1

an

Here, an =
nn

n! · en
. Thus,

an
an+1

=
nn

n! · en
(n+ 1)! · en+1

(n+ 1)n+1
=

nn · (n+ 1) · e
(n+ 1)(n+ 1)n

=
e(

n+1
n

)n =
e(

1 + 1
n

)n ;

lim
n→∞

an
an+1

= lim
n→∞

e(
1 + 1

n

)n =
e

e
= 1

D’Alembert’s ratio test is failed. Since an
an+1

contains the term e, we will apply Logarithmic

test.

lim
n→∞

(
n log

an
an+1

)
= lim

n→∞
n
(

log
e

(1 + 1
n
)n

)
= lim

n→∞
n
[
(log e− n log(1 +

1

n
)
]

= lim
n→∞

n
[
1− n(

1

n
− 1

2n2
+

1

3n3
− . . .)

]
= lim

n→∞
n
[ 1

2n
− 1

3n2
+ . . .

]
= lim

n→∞

[1

2
− 1

3n
+

1

4n2
− . . .

]
=

1

2
< 1

By Logarithmic test the series is divergent.

Remark: The Logarithmic test is used when D’Alembert’s ratio test is fails and the ratio an
an+1

contains the number e.
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Gauss’s Test

0.25. Theorem. If
∑
an is a positive term series such that

an
an+1

= 1 +
λ

n
+

αn
n1+δ

where δ > 0 and {αn} is a bounded sequence, then

(1)
∑
an is convergent if λ > 1;

(2)
∑
an is divergent if λ ≤ 1.

0.26. Example. Examine the convergence of the series:

12

22
+

12 · 32

22 · 42
+

12 · 32 · 52

22 · 42 · 62
+ . . .

Solution: Here an =
12 · 32 · 52 . . . (2n− 1)2

22 · 42 · 62 . . . (2n)2
, therefore

an+1 =
12 · 32 · 52 . . . (2(n+ 1)− 1)2

22 · 42 · 62(2(n+ 1))2
=

12 · 32 · 52 . . . . . . (2n− 1)2 · (2n+ 1)2

22 · 42 · 62 . . . (2n)2 · (2n+ 2)2

an
an+1

=
12 · 32 · 52 . . . (2n− 1)2

22 · 42 · 62 . . . (2n)2
22 · 42 · 62 . . . (2n)2 · (2n+ 2)2

12 · 32 · 52 . . . . . . (2n− 1)2 · (2n+ 1)2
=

(2n+ 2)2

(2n+ 1)2
;

lim
n→∞

an
an+1

= lim
n→∞

(2n+ 2)2

(2n+ 1)2
= lim

n→∞

(1 + 2/2n)2

(1 + 1/2n)2
= 1

D’Alembert’s ratio test is failed. Raabe’s test is also failed (cheek!!!), now we will apply Gauss’s

test.

an
an+1

=
(1 + 2/2n)2

(1 + 1/2n)2
= (1 + 2/2n)2(1 + 1/2n)−2 = (1 + 1/n)2(1 + 1/2n)−2

=
(

1 +
2

n
+

1

n2

)(
1− 2

1

2n
+ 3

1

4n2
− 4

1

8n3
+ . . .

)
= 1 +

1

n
+

1

n2
(1− 2 +

3

4
) + . . . = 1 +

1

n
+O

( 1

n2

)
Comparing with an

an+1
= 1 + λ

n
+ O

(
1
n2

)
we have λ = 1. Thus, by Gauss test the series is

divergent.

Remark: Gauss test is applied when D’Alebert’s ratio test fails and it is possible to express
an
an+1

in powers of 1
n
. Generally Binomial Theorem is used to express an

an+1
in powers of 1

n
.
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Cauchy’s Integral Test

0.27. Theorem. If for x ≥ 1, f(x) is a non-negative monotonically decreasing integrable

function of x such that f(n) = an for n ∈ N, then

(1)
∞∑
n=1

an is converge if
∫∞
1
f(x) dx is finite;

(2)
∞∑
n=1

an is diverge if
∫∞
1
f(x) dx is infinite.

0.28. Example. Test for convergence the series:
∞∑
n=1

ne−n
2
.

Solution: Here, an = ne−n
2
. Take f(x) = xe−x

2
, then f(x) ≥ 0 for all x and an = ne−n

2
=

f(n). Since, f ′(x) = e−x
2

+ xe−x
2
(−2x) = (1− 2x2)e−x

2
< 0 for all x ≥ 1, f(x) is decreasing.

Thus, f(x) is positive and decreasing.

∞∫
1

f(x) dx = lim
n→∞

n∫
1

f(x) dx = lim
n→∞

n∫
1

xe−x
2

dx

Let − x2 = t⇒ −2x dx = dt⇒ 2x dx = −dt
2
,

x→ 1⇒ t→ −1 and x→ n⇒ t→ −n2.

= lim
n→∞

−1

2

−n2∫
−1

et dt = lim
n→∞

−1

2
[et]−n

2

−1 = lim
n→∞

−1

2
[e−n

2 − e−1]

= lim
n→∞

1

2
[e−1 − e−n2

] =
1

2e
which is finite.

⇒
∞∫
1

f(x) dx converges ⇒
∞∑
n=1

an converges.

0.29. Example. Discuss the convergence of the series:
∞∑
n=1

1

n(1 + log n)2
.

Solution: Here, an =
1

n(1 + log n)2
. Take f(x) =

1

x(1 + log x)2
, then f(x) ≥ 0 for all x ≥ 1

and an =
1

n(1 + log n)2
= f(n). Clearly, f(x) is decreasing for all x ≥ 1. Thus, f(x) is positive

and decreasing.

∞∫
1

f(x) dx = lim
n→∞

n∫
1

f(x) dx = lim
n→∞

n∫
1

1

x(1 + log x)2
dx

= lim
n→∞

n∫
1

1

x
(1 + log x)−2 dt = lim

n→∞

[(1 + log x)−1

−1

]n
1
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= lim
n→∞

[1− 1

1 + log n
] = 1 which is finite.

⇒
∞∫
1

f(x) dx converges ⇒
∞∑
n=1

an converges.

Alternating Series
A series of positive (or negative) terms either converge or diverge but never oscillate. A series

having all terms negative also either converge or diverge but never oscillate, because taking the

factor (−1) common from each term then the remaining series is of positive terms. Also a series

with finitely many terms of one sign and the remaining terms of other sign either converge or

diverge but never oscillates, as the nature of the series does not affected by omitting finitely

many terms. If a series for which the limit of nth term is not zero and having infinitely many

positive and negative terms then such a series is called series of arbitrary terms. By above

tests we can not decide the nature of such series.

0.30. Definition.

A series with terms alternately positive and negative is called an alternating series.

For example,

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− . . .

The general form of alternating series is given by

a1 − a2 + a3 − a4 + a5 − a6 + a7 − a8 + . . . =
∞∑
n=1

(−1)n+1an (an > 0)

Leibnitz’s Test on Alternating Series

0.31. Theorem. The alternating series
∞∑
n=1

(−1)n+1an = a1 − a2 + a3 − a4 + a5 − a6 + a7 − a8 + . . . (an > 0)

converges if

(1) an ≥ an+1 for all n ∈ N and (2) lim
n→∞

an = 0.

Absolute and Conditional Convergence

0.32. Definition.

A series
∞∑
n=1

an is said to be absolutely convergent if the series
∞∑
n=1

|an| is convergent.
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0.33. Definition.

If
∞∑
n=1

an is converges but
∞∑
n=1

|an| diverges, then the series
∞∑
n=1

an is called conditionally

convergent

Remark 1: Every absolutely convergent series is a convergent series but the converse is not

true.

Remark 2: If
∞∑
n=1

an is a series of positive terms, then
∞∑
n=1

|an| =
∞∑
n=1

an. Therefor the concepts

of convergence and absolutely convergence are the same. Thus, any convergent series of positive

terms is also absolutely convergent.

0.34. Example. Test the convergence of the series: 5− 10

3
+

20

9
− 40

27
+ . . .

Solution: 5− 10

3
+

20

9
− 40

27
+ . . . =

∞∑
n=0

(−1)n 2n·5
3n

=
∞∑
n=0

(−1)nan. The given series is alternating

series. Here

an =
2n · 5

3n
> 0, for all n ∈ N, and an+1 =

2n+1 · 5
3n+1

.

Observe that

an − an+1 =
2n · 5

3n
− 2n+1 · 5

3n+1
= 5
[2n

3n
− 2n+1

3n+1

]
= 5
[3 · 2n − 2n+1

3n+1

]
= 5
[2n(3− 2)

3n+1

]
=

5 · 2n

3n+1
> 0

Thus an > an+1, for all n ∈ N. Also,

lim
n→∞

an = lim
n→∞

5
(2

3

)n
= 0

Thus, both the conditions of Leibnitz’s test are holds. Therefore, by Leibnitz’s test the
∞∑
n=1

an

is convergent.

0.35. Example. Test the convergence and absolute convergence of the series:

(1)
1

1 · 3
− 1

2 · 4
+

1

3 · 5
− 1

4 · 6
+ . . .

(2)
∞∑
n=1

(−1)n−1√
n

Solution: (1) The given series is alternating series.

1

1 · 3
− 1

2 · 4
+

1

3 · 5
− 1

4 · 6
+ . . . =

∞∑
n=1

(−1)n+1 1

n(n+ 2)
=
∞∑
n=1

bn =
∞∑
n=1

(−1)n+1an.

Here,

an =
1

n(n+ 2)
> 0 for all n ∈ N and an+1 =

1

(n+ 1)(n+ 3)
.
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Observe that, 1
n
> 1

n+1
and 1

n+2
> 1

n+3
it follows that;

an =
1

n(n+ 2)
>

1

(n+ 1)(n+ 3)
= an+1 for all n ∈ N.

Thus, an > an+1 for all n ∈ N. Also,

lim
n→∞

an = lim
n→∞

1

n(n+ 2)
= 0.

Thus, both the conditions of Leibnitz’s test are hold. Therefore, by Leibnitz’s test the
∞∑
n=1

bn

is convergent. Now, ∑
|bn| =

∑
|(−1)n+1an| =

∑
an =

∑ 1

n(n+ 2)
.

This gives

|bn| =
1

n(n+ 2)
=

1

n2
(

1 + 2
n

)
Taking un = 1

n2 , we have

lim
n→∞

|bn|
un

= lim
n→∞

1(
1 + 2

n

) = 1 6= 0 and finite.

Therefore by comparison test
∑
|bn| and

∑
un converge or diverge together. But

∑
un =∑

1
n2 =

∑
1
np with p = 2 is convergent. Hence,

∑
|bn| is also convergent. Which implies that

the given series is absolutely convergent.

(2) The given series is alternating series.
∞∑
n=1

(−1)n−1√
n

=
∞∑
n=1

bn =
∞∑
n=1

(−1)n−1an.

Here,

an =
1√
n
> 0 for all n ∈ N, and an+1 =

1√
n+ 1

.

Observe that,

an =
1√
n
>

1√
n+ 1

= an+1 for all n ∈ N.

Thus, an > an+1 for all n ∈ N. Also,

lim
n→∞

an = lim
n→∞

1√
n

= 0.

Thus, both the conditions of Leibnitz’s test are holds. Therefore, by Leibnitz’s test the
∞∑
n=1

bn

is convergent. Now∑
|bn| =

∑
|(−1)n+1an| =

∑
an =

∑ 1√
n

=
∑ 1

np
,

with p = 1
2
< 1 is divergent. Hence

∑
|bn| is divergent convergent. Thus, given series is

conditionally convergent.
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0.36. Example. Test the convergence of the following series:

(1) 1− 2x+ 3x2 − 4x3 + . . .∞, (0 < x < 1)

(2)
∞∑
n=1

(−1)n

2n− 1
xn+1

(3)
∞∑
n=0

n!(x− 4)n

Solution: (1) Here,
∞∑
n=1

an =
∞∑
n=1

(−1)n−1nxn−1.

|an|
|an+1|

=
nxn−1

(n+ 1)xn
=

1(
n+1
n

) 1

x
=

1(
1 + 1

n

) 1

x

Therefore,

lim
n→∞

|an|
|an+1|

= lim
n→∞

1(
1 + 1

n

) 1

x
=

1

x

Therefore, by D’Alembert’s ratio test,
∑
|an| is convergent if

1

x
> 1 i.e., x < 1. Since abso-

lutely convergent series is also convergent,
∑
an is convergent if x < 1.

(2) Here, an =
(−1)n

2n− 1
xn+1 and an+1 =

(−1)n+1

2n+ 1
xn+2.

|an|
|an+1|

=
|x|n+1

|2n− 1|
· |2n+ 1|
|x|n+2

=
(2n+ 1)

(2n− 1)
· 1

|x|
=

(2 + 1
n
)

(2− 1
n
)
· 1

|x|
.

Therefore,

lim
n→∞

|an|
|an+1|

= lim
n→∞

(2 + 1
n
)

(2− 1
n
)
· 1

|x|
=

1

|x|
.

Therefore, by D’Alembert’s ratio test,
∑
|an| is convergent if

1

|x|
> 1 i.e., |x| < 1 i.e.,

−1 < x < 1. Also
∑
|an| is divergent if |x| > 1. Test fails when |x| = 1.

When x = 1,
∞∑
n=1

an =
∞∑
n=1

(−1)n

2n− 1
≈
∞∑
n=1

(−1)nbn. It is an alternating series. Here

bn =
1

2n− 1
, bn+1 =

1

2n+ 1
.

Clearly, bn > bn+1 for all n. Also lim
n→∞

bn = lim
n→∞

1
2n−1 = 0. Therefore, by Leibnitz’s test,

∑
an

is convergent.

When x = −1,
∞∑
n=1

an =
∞∑
n=1

(−1)n(−1)n

2n− 1
=
∞∑
n=1

1

2n− 1
. Here an =

1

2n− 1
=

1

n
(

2− 1

n

) . Take

bn = 1
n
, then

lim
n→∞

an
bn

= lim
n→∞

1

2− 1
n

=
1

2
6= 0 and finite.
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Therefore, by comparison test
∑
an and

∑
bn converge or diverge together. But

∑
bn =∑

1
n

=
∑

1
np with p = 1, so

∑
bn is divergent. Hence,

∑
an is also divergent.

Since absolutely convergent series is convergent,
∑
an is convergent for −1 < x ≤ 1.

(3) Here, an = n!(x− 4)n and an+1 = (n+ 1)!(x− 4)n+1.

|an|
|an+1|

=
n! · |x− 4|n

(n+ 1)! · |x− 4|n+1
=

1

n+ 1

1

|x− 4|
.

Therefore,

lim
n→∞

|an|
|an+1|

= lim
n→∞

1

n+ 1

1

|x− 4|
=

1

|x− 4|
.

Therefore, by D’Alembert’s ratio test,
∑
|an| is convergent if

1

|x− 4|
> 1 i.e., |x− 4| < 1 i.e.,

−1 < x − 4 < 1 i.e., 3 < x < 5. Also
∑
|an| is divergent if |x − 4| > 1. Test fails when

|x− 4| = 1 i.e., x− 4 = ±1 i.e., x = 5 or x = −3.

When x = 5,
∑
an =

∑
n!. Here an = n!. Now,

lim
n→∞

an = lim
n→∞

n! 6= 0∑
an is not convergent.

When x = −3,
∑
an =

∑
n!(−7)n =

∑
(−1)n7nn! ≈

∑
(−1)nbn. Here bn = 7nn!. Now,

lim
n→∞

bn = lim
n→∞

7nn! 6= 0

By Lebnitz’s test,
∑
an is not convergent.

Hence,
∑
an is convergent for 3 < x < 5.

0.37. Definition. (Power Series)

A power series in powers of (x− a) is an infinite series of the form
∞∑
n=0

an(x− a)n = a0 + a1(x− a) + a2(x− a)2 + a3(x− a)3 + . . .

a0, a1, a2, a3, . . . are constants, called the coefficients of the series, a is a constant, called

the center of the series and x is a variable.

If in particular a = 0, we obtain a power series in powers of x
∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + a3x
3 + . . .

Familiar examples of the power series are Maclaurian series

1

1− x
=
∞∑
n=0

xn = 1 + x+ x2 + x3 + . . . (|x| < 1)

ex =
∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+
x4

4!
+ . . .
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cosx =
∞∑
n=0

(−1)nx2n

(2n)!
= 1− x2

2!
+
x4

4!
− x6

6!
+ . . .

sinx =
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
= x− x3

3!
+
x5

5!
− x7

7!
+ . . .

Radius of Convergence

• The power series
∞∑
n=0

an(x− a)n is always converges at x = a, because then all the terms

except for the first, a0, are zero. Such a series is of no particular interest.

• If there are further values of x for which the series is converges, these values form an

interval, called the interval of convergence. If this interval is finite, then it has the

mid point a, so the interval is of the form

|x− a| < R

• The power series
∞∑
n=0

an(x− a)n is converges for all x such that |x− a| < R and diverges

for all x such that |x− a| > R. The number R is called the radius of convergence of

the power series The power series
∞∑
n=0

an(x− a)n.

• The radius of convergence, R, can be obtained from either of the formulas

1

R
= lim

n→∞

∣∣∣an+1

an

∣∣∣ or
1

R
= lim

n→∞
|an|1/n

provided these limits exists and are not zero. If they are infinite, then the power series

converges only at the center a.

0.38. Example. Find the radius of convergence and interval of convergence of the series

1

1− x
=
∞∑
n=0

xn = 1 + x+ x2 + x3 + . . .

.

Solution: This is a power series in powers of x with an = 1. So that,

1

R
= lim

n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

∣∣∣1
1

∣∣∣ = 1

Thus R = 1. Hence the series converges for |x| < 1. Thus radius of convergence is 1 and

interval of convergence is (−1, 1).

0.39. Example. Find the radius of convergence and interval of convergence of the series

ex =
∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+
x4

4!
+ . . .

.

Solution: This is a power series in powers of x with an = 1
n!

. So that,

1

R
= lim

n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

∣∣∣ n!

(n+ 1)!

∣∣∣ = lim
n→∞

1

n+ 1
= 0.
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Thus R =∞. Hence the series converges for x. Thus radius of convergence is ∞ and interval

of convergence is R.

0.40. Example. Find the radius of convergence and interval of convergence of the series

∞∑
n=0

n!xn

.

Solution: This is a power series in powers of x with an = n!. So that,

1

R
= lim

n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

∣∣∣(n+ 1)!

n!

∣∣∣ = lim
n→∞

(n+ 1) =∞.

Thus R = 0. Hence the series converges only at center x = 0. Such a series is useless.

0.41. Example. Find the radius of convergence and interval of convergence of the series

∞∑
n=0

xn

n+ 2

.

Solution: This is a power series in powers of x with an =
1

n+ 2
. So that,

1

R
= lim

n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

∣∣∣n+ 2

n+ 3

∣∣∣ = lim
n→∞

1 + 2/n

1 + 3/n
= 1.

Thus R = 1. Hence the series converges for |x| < 1. Thus radius of convergence is 1 and

interval of convergence is (−1, 1).

0.42. Example. Find the radius of convergence and interval of convergence of the series

∞∑
n=0

(−3)nxn√
n+ 1

.

Solution: This is a power series in powers of x with an =
(−3)n√
n+ 1

. So that,

1

R
= lim

n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

∣∣∣(−3)n+1

√
n+ 2

√
n+ 1

(−3)n

∣∣∣ = lim
n→∞

3

√
n+ 1

n+ 2
= lim

n→∞
3

√
1 + 1/n

1 + 2/n
= 3

Thus R = 1
3
. Hence the series converges for |x| < 1

3
. Thus radius of convergence is 1/3 and

interval of convergence is (−1
3
, 1
3
).

0.43. Example. Find the radius of convergence and interval of convergence of the series

∞∑
n=0

(−1)n

8n
x3n

.

Government Science College, Gandhinagar,

23

Dr. Bhavin Patel



Series Chapter 1. Series

Solution: Here
∞∑
n=0

(−1)n

8n
x3n =

∞∑
n=0

(−1)n

8n
(x3)n =

∞∑
n=0

(−1)n

8n
tn

This is a power series in powers of t = x3 with an =
(−1)n

8n
. So that,

1

R
= lim

n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

∣∣∣(−1)n+1

8n+1

8n

(−1)n

∣∣∣ = lim
n→∞

∣∣∣1
8

∣∣∣ =
1

8
.

Thus R = 8. Hence the series converges for

|t| < 8 ⇒ |x3| < 8 ⇒ |x| < 2.

Thus radius of convergence is 2 and interval of convergence is (−2, 2).
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Extra Practice

0.44. Example. For
∞∑
n=0

(−1)n−1(3x− 1)n

n2

(1) Find the series’ radius of convergence.

(2) For what value of x does the series converges? (a) absolutely (b) conditionally.

0.45. Example. For
∞∑
n=0

(2x+ 3)2n+1

n!

(1) Find the series’ radius of convergence.

(2) For what value of x does the series converges? (a) absolutely (b) conditionally.

0.46. Example. Examine the convergence of the series:

(1)
1√

1 +
√

2
+

1√
2 +
√

3
+

1√
3 +
√

4
+ . . .

(2)
1√
1 · 2

+
1√
2 · 3

+
1√
3 · 4

+ . . .

(3)
1

1 · 2
+

2

3 · 4
+

3

5 · 6
+ . . .

(4) 1 +
1

2!
+

1

3!
+

1

4!
+ . . .

(5)
1

1 · 2 · 3
+

3

2 · 3 · 4
+

5

3 · 4 · 5
+ . . .

(6)
2

1p
+

3

2p
+

4

3p
+

5

4p
+ . . .

(7)

√
1

23
+

√
2

33
+

√
3

43
+ . . .

(8)
1

4 · 6
+

√
3

6 · 8
+

√
5

8 · 10
+ . . .

(9)

√
2− 1

1
+

√
3−
√

2

2
+

√
4−
√

3

3
+ . . .

(10)
1 · 2

32 · 42
+

3 · 4
52 · 62

+
5 · 6

72 · 82
+ . . .

0.47. Example. Examine the convergence of the series:

(1)
∞∑
n=1

√
1 + 2n

1 + 3n

(2)
∞∑
n=1

1√
n

tan
1

n

(3)
∞∑
n=1

n+ 2

n3 + 1

(4)
∞∑
n=1

(3n− 1)−1

(5)
∞∑
n=1

√
n+ 1−

√
n− 1

n

(6)
∞∑
n=1

cos
1

n

(7)
∞∑
n=1

tan
1

n

(8)
∞∑
n=1

1

n2
sin

1

n

(9)
∞∑
n=1

√
n+ 1−

√
n

np

(10)
∞∑
n=1

1

n(a+ b
n
)
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